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Abstract

In this paper, a new analytical model is proposed to investigate interior noise in a passenger compartment of an

automobile with a trunk. The new analytical model is a coupled structural–acoustic model, which consists of double

cavities connected by a neck and two mechanical harmonic oscillators. Acoustic impedance is calculated at every surface of

discontinuity in the cross-sectional area for the forced vibro-acoustical analysis of the coupled system. Evanescent wave as

well as standing wave is considered to investigate the neck’s effect on modal properties of the coupled system. The

evanescent wave with a set of cross-modes is converted to an added length term of the neck. In deriving the characteristic

equation of the coupled system, the real length of a neck is replaced by the effective length including the added length.

A new coupling parameter, which changes the natural frequencies of the coupled system, is introduced and is compared

with other coupling parameters (mass ratio and stiffness ratio) in case studies. The natural frequencies of the coupled

system decrease as the value of the new coupling parameter increases, which means that the cross-sectional area of the neck

decreases and its position shifts close to the corner. Also, the results in this paper are qualitatively validated by an

experimental investigation in a companion paper, Part 2.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In many engineering situations, noise and vibration problems generated by structural–acoustic coupling can
be encountered. Coupling between an acoustic cavity and a surrounding elastic body strongly affects the
interior noise of a vehicle compartment in the low-frequency range [1]. Fluid loading has been considered an
important factor in the vibration of an elastic plate of vibrating machinery in contact with heavy fluid such as
water [2]. The general acoustic characteristics of a coupled structural–acoustic system consisting of a simple
rectangular or circular cavity and a simply supported or clamped plate have been theoretically and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

c sound velocity
~f 1ðtÞ external harmonic force
f a

i natural frequency of a rigid-wall cavity
f c

i natural frequency of the coupled system
f s natural frequency of an oscillator
2hi height of a cavity (i ¼ 1, 2) or a neck

(i ¼ n)
Hi1 height ratio between cavity 2(i ¼ 2) or a

neck (i ¼ n) and cavity 1
j imaginary unit,

ffiffiffiffiffiffiffi
�1
p

k wave number ð¼ o=cÞ

ikq wave number in the y-direction of the
ith cavity

iks wave number in the z-direction of the ith
cavity

li length of a cavity (i ¼ 1, 2) or a neck
(i ¼ n)

l0n effective length of a neck
Li1 length ratio between cavity 2ði ¼ 2Þ or a

neck ði ¼ nÞ and cavity 1
L0n1 non-dimensional effective length
DLn1 non-dimensional added length
Dli added length of the ith cavity
Dln total added length of a neck

ð¼ Dl1 þ Dl2Þ

mi mass of a mechanical oscillator
ma

i equivalent mass of the acoustic medium
in the ith cavity

u time independent velocity fluctuation
~pi acoustic pressure of a cavity ði ¼ 1; 2Þ or

a neck ði ¼ nÞ

Ri damping coefficient
si spring constant of a mechanical

oscillator
sa

i equivalent stiffness of the acoustic
medium in the ith cavity

S cross-sectional area of a surface
Si cross-sectional area of a cavity ði ¼ 1; 2Þ

or a neck ði ¼ nÞ

Si1 cross-sectional area ratio between cavity
2ði ¼ 2Þ or a neck ði ¼ nÞ and cavity 1

t time
2wi width of a cavity ði ¼ 1; 2Þ or a neck

ði ¼ nÞ

W i1 width ratio between cavity 2ði ¼ 2Þ or a
neck ði ¼ nÞ and cavity 1

Z acoustic impedance
Zi acoustic impedance at point i.
Z
ðmÞ
i mechanical impedance at point i.

Zci
acoustic impedance in cavity iði ¼ 1; 2Þ.

Z̄i non-dimensional acoustic impedance at
point i.

Z̄
ðmÞ

i non-dimensional mechanical impedance
at point i.

Greek symbols

iaxqs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ik

2
q þ ik

2
s � k2

q
ra density of acoustic medium
O non-dimensional frequency ð¼ kl1=pÞ
Os non-dimensional natural frequency of

an oscillator
Oa

i non-dimensional natural frequencies of
a cavity

Oc
i non-dimensional natural frequencies of

a coupled system
~xn displacement of a lumped mass element

in a neck
~xi displacement of the ith oscillator
o angular frequency

Superscripts

a acoustic medium or cavity
c a coupled system
s or (m) a mechanical oscillator
+,� right and left of a specific point

Subscripts

i number of a cavity or a mechanical
oscillator

n a neck
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experimentally discussed in terms of natural frequencies and natural modes in the previous researches [3–8].
And, to investigate the coupling effect of a coupled system with special acoustic characteristics, a particular
theoretical model has been introduced [9,10].

Our works suggest a new theoretical model, which can best represent interior noise in the passenger
compartment of an automobile with a trunk in the low-frequency range. A package tray in the real car has
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several holes for speakers and electric devices, and air ventilation holes for air leakage when side doors are
closed. Since a passenger compartment cavity is acoustically connected to the trunk compartment cavity
through the package tray, the longitudinal acoustic modes, which strongly contribute to the booming noise of
the vehicle, are affected by the trunk cavity and by a trunk lid [11]. Therefore, case studies on the new coupled
system can provide better understanding of the acoustic characteristics of a passenger car with a trunk and
information on the reduction of the booming noise. And, simulation results show that acoustical modification
can change the coupling degree of the coupled system.

Many theoretical models have been introduced to exactly explain and predict the dynamic behavior of
coupled structural–acoustic systems, which have been too complicated to directly analyze. Although these
models were simplified systems, they were very informative in helping us understand the acoustic
characteristics of a real coupled system. Results obtained from theoretical investigations such as parametric
studies have been useful in partially modifying a real system to have desirable acoustic characteristics. For
example, to reduce interior noise in cars, spacecraft and airplanes, one-dimensional coupled structural–
acoustic system was suggested, and the effect of geometrical and physical parameters on the natural
frequencies of the coupled system was investigated [12–14].

Some researchers investigated a one-dimensional rectangular or circular cavity coupled to a simple
structural system. Cura et al. [12] considered a uni-dimensional acoustic cavity coupled to a one-degree-of-
freedom system as an analytical model to experimentally and analytically study the vibro-acoustical behavior
of the system excited by a harmonic force. And Scarpa and Curti [13] used a rectangular acoustic cavity closed
at one end by a simply supported plate to present an algorithm that can compute the sensitivities of the
frequencies versus design parameters (plate thickness and cavity width). Hong and Kim [14] formulated the
governing equations of a one-dimensional acoustic pipe whose one end was closed and the other end was
attached to a one-degree-of-freedom mass–spring system (a mechanical harmonic oscillator). Also, they
developed a solution procedure for a one-dimensional system to analyze a coupled structural–acoustic system
with viscous or structural damping and absorbing material [15]. Lyon [16] used a small rigid enclosure backed
by one flexible wall to study the theoretical noise reduction according to frequency range. Magalhaes [17]
developed a one-dimensional component mode synthesis (CMS) model to analyze and calculate sound
transmission through a limp mass panel between connected acoustic volumes. Dowell [18] investigated the
effect of a cavity on panel using a rectangular cavity of which one side was a vibrating plate, and illustrated the
change in the natural frequencies in terms of aerodynamics.

Other researchers have suggested advanced analytical methods for new theoretical models and applied the
results to finite element models for predicting and modifying interior noise in a coupled structural–acoustic
system. Sung [19] suggested an analytical method to identify noise sources and to predict interior noise of an
automotive vehicle by using finite element models. Nefske [20] investigated the acoustics of an automobile
passenger compartment by using the brief formulation of the finite element method for structural–acoustical
analysis. Han [21] developed a hybrid model to predict the vibro-acoustic response of structures excited by
complex turbulent flow. Trompette [22] predicted the vibro-acoustic behavior of the metal box by using FE
model and BE model, which were adjusted by comparing the natural frequencies calculated from the models
with those measured through experiments. Campbell [23] defined body acoustic sensitivity to use as a noise
transfer function for structural–acoustic coupling analysis and showed that an analytical method for
predicting body acoustic sensitivity could be used early in the design process using finite element model.

We propose a new coupled structural–acoustic model composed of double cavities connected by a neck and
mechanical harmonic oscillators to identify the acoustic characteristics of a passenger compartment with a
trunk compartment, and a plane wave theory is applied to the new coupled model. Acoustic impedances at
every surface of discontinuity in the cross-sectional area are calculated for forced vibro-acoustical analysis of
the suggested theoretical model: the acoustic response of the system to an external force is calculated. All
parameters and coefficients are written in dimensionless forms for the case studies. Three coupling parameters
are developed from the process of deriving the characteristic equation. The first parameter is mass ratio
between the air in the cavity and the mechanical oscillator that backs the cavity, the second one is the ratio
between the equivalent stiffness of air in the cavity and the stiffness of the mechanical oscillator, and the third
is a new coupling parameter, which is defined as the non-dimensional effective length of the neck divided by
the cross-sectional area ratio between the neck and the cavity. While the first two coupling parameters have
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been considered in the many previous papers, the new coupling parameter, which can explain the effect of the
cross-sectional area and position of the neck on coupling degree, has hardly ever been dealt with as a coupling
parameter of a coupled system. We will examine the influence of the last coupling parameter on our coupled
system and compare it with that of the first two parameters for four cases depending on the natural frequency
of the mechanical harmonic oscillator. Experiments supporting the results of the theoretical model in this
paper will be conducted in the companion paper, Part 2.

2. Theoretical model for forced vibro-acoustical analysis

Fig. 1 shows a theoretical model investigated in the forced vibro-acoustical analysis: two rectangular cavities
of the same cross-section are connected by a neck and blocked by two mechanical harmonic oscillators
(mass–spring–damper system) at both ends. This simplified model represents a passenger compartment
acoustically connected to a trunk compartment. The neck has a cross-sectional area of Snð¼ 2wn � 2hnÞ, and
its length ln is so small compared to the cavity length that the neck can be regarded as a lumped mass.
Si denotes the cross-sectional area of each cavity, whose lengths, widths and heights are denoted by li, 2wi and
2hi, respectively. Cavity 1 is blocked by an oscillator at x ¼ b and cavity 2 blocked by the same oscillator at
x ¼ 0. Si, mi and Ri designate the spring constant, mass and damping coefficients, respectively. External
harmonic force ~f 1ðtÞ applied at x ¼ b generates the displacements ~x1ðtÞ and ~x2ðtÞ of the two mechanical
oscillators and the acoustic pressures ~p1ðx; tÞ and ~p2ðx; tÞ in the two cavities.

2.1. Plane wave theory and evanescent wave

In general, the concept of acoustic impedance is useful for acoustical analysis of a pipe or a long cavity,
whose acoustical properties in the low-frequency range change along only one direction but not along the
other directions [24]. And it is convenient to represent the frequency response characteristics in terms of
acoustic impedance in investigating the forced response of an acoustic medium derived by a mechanical
oscillator [25–27]. The use of acoustic impedance Z is based on the plane wave, whose acoustical variables
have constant amplitude on a given plane perpendicular to the direction of wave propagation [28], and is
defined as acoustic pressure p divided by volume velocity at the surface:

Z ¼ p=ðS � uÞ, (1)

where S is cross-sectional area and u is velocity.
Assuming that the lengths of two cavities, which are connected by a neck, are much longer than their widths

and heights, the acoustic field of each cavity in the low frequency range consists of a standing wave and an
evanescent wave in the x-direction. The standing wave is superposed by a forward-traveling wave and a
l2
S2
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Fig. 1. The coupled system composed of double cavities connected by a neck and two mechanical harmonic oscillators.
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backward-traveling wave in the x-direction, and the evanescent wave, which is created due to the cross-
sectional discontinuity at the interface between neck and cavity, decays away from the neck. Therefore,
acoustical properties around the interface do not have constant amplitude on the perpendicular plane because
the evanescent wave is a decaying wave with a set of cross-modes. It seems that acoustic impedance cannot be
used for this forced vibro-acoustical analysis. But, since evanescent waves can be converted to the added
length of a neck [29], acoustic impedance can be used for this simplified theoretical model if an effective length
including the added length replaces the real length of a neck.
2.2. Input acoustic impedance

Input acoustic impedance Zbþ on the right-hand side of the driver in the coupled system shown in Fig. 1 can
be expressed by the series combination of mechanical impedance of the driver Z

ðmÞ
b and acoustic impedance

Zb� on the left-hand side of the driver:

Zbþ ¼ Z
ðmÞ
b =S2

1 � Zb� , (2)

where the mechanical impedance of the driver is

Z
ðmÞ
b ¼ R1 þ jðm1 � o� s1=oÞ. (3)

Acoustic impedance Zb� on the left-hand surface at x ¼ b is expressed as a function of acoustic impedance
Zaþ

1
on the right-hand side at x ¼ a1:

Zb� ¼ Zc1

Zaþ
1
� jZc1 tanðkl1Þ

Zc1 � jZaþ
1
tanðkl1Þ

, (4)

where Zc1 ¼ rac=S1, ra being the density of the acoustic medium, is the acoustic impedance in cavity 1. And
the acoustic impedance Zaþ

1
is represented by the series combination of Za�

2
on the left-hand side at x ¼ a2 and

the neck’s mechanical impedance ZðmÞn :

Zaþ
1
¼ Za�

2
� ZðmÞn =S2

n, (5)

ZðmÞn ¼ joral0nSn, (6)

where the effective length of the neck l0n consists of the real length of the neck and the added length:
l0n ¼ ln þ Dl1 þ Dl2. Evanescent wave, which is generated around the neck due to the discontinuity in the cross-
sectional area at the interface between the neck and the cavity, is converted to the added length term. And the
added length of the ith cavity is represented in terms of geometric parameters [29].

Dli ¼
Si

Sn

X
q¼0

X
s¼0

1

iaqs
i�qsif

2
qif

2
s ; i�qs ¼

1; qa0 and sa0;

2; otherwise;

(
(7)

ifq ¼

Z wn

�wn

cos ðikqðy� wiÞÞdy

�Z wi

�wi

cos2ðikqðy� wiÞÞdy, (8)

ifs ¼

Z hn

�hn

cos ðiksðz� hiÞÞdz

�Z hi

�hi

cos2ðiksðz� hiÞÞdz, (9)

iaxqs
¼ �jkx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ik

2
q þ ik

2
s � k2

q
, (10)

where k ¼ o=c, ikq ¼ qp=ð2wiÞ and iks ¼ sp=ð2hiÞ.
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Using Z0þ , acoustic impedance Za�
2
on the left-hand side at x ¼ a2 becomes

Za�
2
¼ Zc2

Z0þ � jZc2 tanðkl2Þ

Zc2 � jZ0þ tanðkl2Þ
, (11)

where Zc2 ¼ ra � c=S2 is the acoustic impedance in cavity 2.
Also, Z0þ is represented by the series combination of the acoustic impedance Z0� on the left-hand side at

x ¼ 0 and the mechanical impedance Z
ðmÞ
0 of the oscillator:

Z0þ ¼ Z0� � Z
ðmÞ
0 =S2

2, (12)

Z
ðmÞ
0 ¼ R2 þ jðm2o� s2=oÞ. (13)

The characteristic equation of the coupled system can be obtained when the reactance of the input
impedance is equal to zero as expressed by Eq. (14) [28]:

Im½Zbþ� ¼ 0. (14)

Dividing both sides of each equation by Zc1 , variables involved in Eqs. (2)–(14) are rewritten in
dimensionless forms for case studies.

Z̄bþ ¼ Zbþ=Zc1 ¼ Z̄
ðmÞ

b � Z̄b� , (15)

Z̄
ðmÞ

b ¼
Z
ðmÞ
b

S2
1Zc1

¼
R1

rcS1
þ j

m1

ma
1

Op�
s1

sa
1

1

Op

� �
, (16)

where O ¼ f =ðc=ð2l1ÞÞ denotes the non-dimensional excitation frequency, and ma
1 ¼ ral1S1 and sa

1 ¼

rac2S2
1=V 1 are the equivalent mass and the equivalent stiffness of the acoustic medium in cavity 1, respectively.

Z̄b� ¼
Zb�

Zc1

¼
Z̄aþ

1
� j tanðOpÞ

1� jZ̄aþ
1
tanðOpÞ

, (17)

Z̄aþ
1
¼ Z̄a�

2
� Z̄

ðmÞ

n , (18)

Z̄
ðmÞ

n ¼
ZðmÞn

S2
nZc1

¼ jOp
L0n1
Sn1

, (19)

where L0n1 ¼ l0n=l1 is the non-dimensional effective length of the neck and Sn1 the cross-sectional area ratio
between the neck and cavity 1.

Z̄a�
2
¼

1

S21

Z̄0þS21 � j tanðOpL21Þ

1� jZ̄0þS21 tanðOpL21Þ
, (20)

Z̄0þ ¼ Z̄0� � Z̄
ðmÞ

0 , (21)

Z̄
ðmÞ

0 ¼
Z
ðmÞ
0

S2
2Zc1

¼
1

S21

R2

rcS2
þ j

m2

ma
2

OpL21 �
s1

sa
2

1

Op
1

L21

� �� �
, (22)

where ma
2 ¼ ral2S2 and sa

2 ¼ rac2S2
2=V 2 are the equivalent mass and the equivalent stiffness of the acoustic

medium in cavity 2, respectively. S21 and L21 are the cross-sectional area ratio and the length ratio between
cavity 2 and cavity 1, respectively.

3. Case studies

Equations developed in the previous section are applied to two analytical models. The first analytical model
(See Fig. 2) represents double cavities connected by a neck and blocked by an oscillator at one end ðx ¼ bÞ and
corresponds to the passenger compartment cavity with a trunk cavity excluding the trunk lid. The second
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Fig. 2. Double rectangular cavities connected by a neck and blocked by a mechanical oscillator at one end.
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model (See Fig. 1), which consists of double cavities connected by a neck and two oscillators at both ends,
represents the passenger compartment cavity with a trunk cavity including a trunk lid. Also, two kinds of
natural frequency of the oscillators are used in each case study because the proximity in the natural frequency
f s of an oscillator and the natural frequency f a

i of the rigid-wall cavity mode affects the ith coupled natural
frequencies f c

i of the coupled system; f sof a
1 (the 1st oscillator); and f s

¼ f a
1 (the 2nd oscillator). Analytical

results explain the effect of four factors on the modal properties of the coupled systems: mass ratio; stiffness
ratio; a neck’s cross-sectional area; and a neck’s position.

For the convenience of analysis, cavity 1 and cavity 2 have the same rectangular cross-section
(2w1 ¼ 2w2 ¼ 0:64m, 2h1 ¼ 2h2 ¼ 0:44m and W 21 ¼ 1;H21 ¼ 1) and the width of the neck is the same as
widths of cavity 1 and cavity 2 ðW n1 ¼ 1Þ. But, neck’s length is twelve-thousandths of that of cavity 1 ðLn1 ¼

0:012Þ and its height is one-tenth of height of cavity 1 ðHn1 ¼ 0:1Þ. Length ratio between cavity 2 and cavity 1 is
0.34 ðL21 ¼ 0:34Þ. Also, acoustic medium is air: density ra is 1.12kg/m3; and sound velocity c is 340m/s.

Mass 2.20 kg of the first oscillator is calculated from a real steel plate of 440� 640� 1mm, and its natural
frequency, which is determined from a clamped real steel plate by Galerkin’s Method, is less than the first
natural frequency of the double cavities: f sof a

1. Stiffness (1.09� 105N/m) is calculated by the mass and the
natural frequency determined previously. Therefore, the non-dimensional natural frequency Os of the first
oscillator, mass ratio m1=ma

1 and stiffness ratio s1=sa
1 are 0.21, 6.45 and 2.77, respectively.

And, with its mass fixed at 2.20 kg, the stiffness of the second oscillator is adjusted so that f s coincides with
f a
1. Therefore, non-dimensional natural frequency Os of the oscillator, mass ratio m1=ma

1 and stiffness ratio
s1=sa

1 are 0.58, 6.45 and 21.10, respectively. And dissipative mechanism is not considered in order to exactly
find the coupled natural frequencies: Ri ¼ 0.

In each case study, the non-dimensional natural frequencies Oc
i of the coupled systems are calculated for the

change in the mass ratio, the stiffness ratio, a neck’s position and cross-sectional area ratio. Mass ratio and
stiffness ratio are multiplied by 1/4, 1/2, 1, 2 and 4 with the equivalent mass and stiffness of the acoustic
medium constant. A neck has three positions: center, edge and a mid-point between two positions. And, the
cross-sectional area ratio has five values: one-tenth; two-tenth; three-tenth; four-tenth; and five-tenth. Also,
the theoretical resonance frequencies are calculated by MATLAB and results in Case study I-a are compared
with those obtained from finite element analysis (SYSNOISE 5.5) for validating accuracy with regard to
simplifications.

3.1. Case study I: double cavities blocked by an oscillator at one end

Double cavities investigated in this case study are connected by a neck and blocked by an oscillator at x ¼ b

as shown in Fig. 2. The acoustic impedance at x ¼ 0þ becomes infinite ðZ̄0þ ! 1Þ and the characteristic
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equation, which is deduced from Eqs. (15)–(20), can be represented by Eq. (23).

Op
m1

ma
1

�
1

Op
s1

sa
1

�
1=S21 cotðOpL21Þ � OpL0n1=Sn1 � tanðOpÞ

1þ ½1=S21 cotðOpL21Þ � OpL0n1=Sn1� tanðOpÞ
¼ 0. (23)

This equation shows that the natural frequencies of the coupled system depend on the non-dimensional
effective length L0n1 depending on the neck’s position and the cross-sectional area ratio Sn1 as well as the mass
ratio m1=ma

1 and the stiffness ratio s1=sa
1. S21 and L21 could affect natural frequencies, but their effect will not

be investigated in this work because width and length of a car with a trunk are very difficult to change in order
to tune the acoustic natural frequency after the design process from a practical point of view.

3.1.1. Case study I-a: double cavities blocked by the first oscillator at one end ðOsoOa
1Þ

Tables 1–4 show that the resonance frequencies calculated by our proposed method are very close to those
obtained from FEA (SYSNOISE 5.5) within a tolerance of 2.11 percent. Fig. 3 shows the first four non-
dimensional natural frequencies of the coupled system with four factors. Fig. 3(a) and (b) show the effects of
mass and stiffness on the coupled system, respectively. Only the first natural frequency Oc

1, which represents
the structural-controlled mode, increases with decreasing mass ratio and with stiffness ratio, but the other
frequencies, which represent cavity-controlled modes, hardly changes. And it is interesting to compare the
difference between the first two natural frequencies for the stiffness ratio multiplied by 4 and those for the
mass ratio multiplied by 1/4. The proximity of uncoupled natural frequencies is the same, but the degree
of coupling, the difference of two put-away frequencies, is greater in the latter than that in the former.
Figs. 3(c) and (d) represent the effect of a neck on the coupled system. While the natural frequencies of the
structural-controlled modes remain constant for the neck’s position and cross-sectional area, those of the
cavity-controlled modes decrease as the neck approaches the corner from the center but increase with the
cross-sectional area.

3.1.2. Case study I-b: double cavities blocked by the second oscillator at one end ðOs ¼ Oa
1Þ

Figs. 4(a) and (b) show the variation of the natural frequency with mass ratio and stiffness ratio of the
coupled system for Os ¼ Oa

1. Although two new natural frequencies are split around the uncoupled natural
Table 1

Comparison of non-dimensional resonance frequencies by theory and FEA: stiffness effect (Case study I-a)

s1=sa
1 (� 2.77) 1/4 1/2 1 2 4

Oc
1

Theory 0.145 0.176 0.226 0.301 0.408

FEA 0.142 0.174 0.224 0.300 0.408

Difference (%) 2.11 1.15 0.89 0.33 0.00

Oc
2

Theory 0.587 0.587 0.588 0.590 0.596

FEA 0.592 0.592 0.593 0.595 0.601

Difference (%) 0.84 0.84 0.84 0.84 0.83

Oc
3

Theory 1.159 1.159 1.159 1.159 1.160

FEA 1.160 1.160 1.160 1.161 1.161

Difference (%) 0.09 0.09 0.09 0.17 0.09

Oc
4

Theory 2.068 2.068 2.068 2.068 2.069

FEA 2.062 2.062 2.062 2.062 2.063

Difference (%) 0.29 0.29 0.29 0.29 0.29

Difference ð%Þ ¼
FEA� Theory

FEA

����
����� 100.
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Table 2

Comparison of non-dimensional resonance frequencies by theory and FEA: mass effect (Case study I-a)

m1=ma
1 (� 6.45) 1/4 1/2 1 2 4

Oc
1

Theory 0.392 0.306 0.226 0.163 0.116

FEA 0.393 0.305 0.224 0.162 0.116

Difference (%) 0.25 0.33 0.89 0.62 0.00

Oc
2

Theory 0.638 0.602 0.588 0.582 0.579

FEA 0.641 0.607 0.593 0.587 0.585

Difference (%) 0.47 0.82 0.84 0.85 1.03

Oc
3

Theory 1.197 1.171 1.159 1.153 1.150

FEA 1.195 1.172 1.160 1.155 1.153

Difference (%) 0.17 0.09 0.09 0.17 0.26

Oc
4

Theory 2.091 2.076 2.068 2.065 2.063

FEA 2.084 2.070 2.062 2.059 2.058

Difference (%) 0.33 0.29 0.29 0.29 0.24

Difference ð%Þ ¼
FEA� Theory

FEA

����
����� 100.

Table 3

Comparison of non-dimensional resonance frequencies by theory and FEA: effect of the neck’s position (Case study I-a)

gn=h1 0 0.3 0.6 0.9

Oc
1

Theory 0.226 0.226 0.226 0.225

FEA 0.224 0.224 0.224 0.224

Difference (%) 0.89 0.89 0.89 0.45

Oc
2

Theory 0.588 0.582 0.556 0.490

FEA 0.593 0.585 0.560 0.495

Difference (%) 0.84 0.51 0.71 1.01

Oc
3

Theory 1.159 1.152 1.130 1.093

FEA 1.160 1.151 1.127 1.088

Difference (%) 0.09 0.09 0.27 0.46

Oc
4

Theory 2.068 2.059 2.044 2.032

FEA 2.062 2.049 2.033 2.022

Difference (%) 0.29 0.49 0.54 0.49

Difference ð%Þ ¼
FEA� Theory

FEA

����
����� 100.

J.W. Lee, J.M. Lee / Journal of Sound and Vibration 299 (2007) 900–917908
frequency, only the natural frequency related to structural-controlled mode abruptly changes with the
mass ratio or the stiffness ratio; but the other natural frequencies hardly change. But, the change in
the neck’s position and cross-sectional area affects not only the cavity-controlled modes but also the
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Table 4

Comparison of non-dimensional resonance frequencies by theory and FEA: effect of the neck’s cross-sectional area (Case study I-a)

hn=h1 0.1 0.2 0.3 0.4 0.5

Oc
1

Theory 0.226 0.226 0.226 0.227 0.227

FEA 0.224 0.225 0.225 0.225 0.225

Difference (%) 0.89 0.44 0.44 0.89 0.89

Oc
2

Theory 0.588 0.643 0.677 0.702 0.720

FEA 0.593 0.647 0.680 0.704 0.720

Difference (%) 0.84 0.93 0.44 0.28 0.00

Oc
3

Theory 1.159 1.217 1.269 1.317 1.360

FEA 1.160 1.222 1.278 1.328 1.372

Difference (%) 0.09 0.41 0.70 0.82 0.58

Oc
4

Theory 2.068 2.091 2.113 2.135 2.157

FEA 2.062 2.085 2.109 2.132 2.154

Difference (%) 0.29 0.29 0.19 0.15 0.14

Difference ð%Þ ¼
FEA� Theory

FEA

����
����� 100.
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structural-controlled mode as shown in Figs. 4(c) and (d) although the degree of shift in natural frequency
related to structural-controlled mode is small. All natural frequencies decrease with the distance gn between
the centers of the neck and the cavity and increase with the neck’s cross-sectional area.

3.2. Case study II: double cavities blocked by two oscillators at both sides

As shown in Fig. 1, case study II considers double cavities blocked at both ends by two oscillators, whose
physical and modal properties are equal to each other. Assuming that the external force to the mechanical
oscillator at x ¼ 0� does not exit, acoustic impedance Z̄0� at the point is zero. Therefore, Z̄0þ and the
characteristic equation, which is deduced from Eqs. (15)–(22), can be expressed by Eqs. (24) and (25),
respectively.

Z̄0þ ¼ �Z̄
ðmÞ

0 ¼ �
Z
ðmÞ
0

S2
2Zc1

¼ �
1

S21

R2

rcS2
þ j Op

m2

ma
2

L21 �
1

Op
s2

sa
2

1

L21

� �� �
, (24)

Im½Z̄
ðmÞ

b � þ

1

S21

Im½Z̄
ðmÞ

0 �S21 þ tanðOpL21Þ

1� Im½Z̄
ðmÞ

0 �S21 tanðOpL21Þ
þ OpL0n1=Sn1 þ tanðOpÞ

1�
1

S21

Im½Z̄
ðmÞ

0 �S21 þ tanðOpL21Þ

1� Im½Z̄
ðmÞ

0 �S21 tanðOpL21Þ
þ OpL0n1=Sn1

" #
tanðOpÞ

¼ 0. (25)

3.2.1. Case study II-a: double cavities blocked by the first oscillator at both ends ðOsoOa
1Þ

Fig. 5 shows the first five natural frequencies changing with the four factors. The first two natural
frequencies Oc

1 and Oc
2, which represent the structural-controlled modes in each figure, are split around the

non-dimensional natural frequency Osof the oscillator. They are strongly affected by the stiffness ratio,
but cavity-controlled modes are not as shown in Fig. 5(a). And the difference jOc

1 � Oc
2j between two split

natural frequencies increases as the mass ratio decreases, and the non-dimensional natural frequency Oc
3 of the
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Fig. 3. Influence of four factors on natural frequency Oc
i for O

soOa
1 (Case study I-a): original stiffness ratio ðs1=sa

1Þ ¼ 2:77, original mass

ratio ðm1=ma
1Þ ¼ 6:45, Os

b ¼ 0:21 and Oa
1 ¼ 0:58. (J) 1st natural frequency ðOc

1Þ, (&) 2nd natural frequency ðOc
2Þ, (X) 3rd natural

frequency ðOc
3Þ and (B) 4th natural frequency ðOc

4Þ. (a) Stiffness effect, (b) mass effect, (c) effect of the neck’s position and (d) effect of the

neck’s cross-sectional area.
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lowest-order cavity-controlled mode increases with decreasing mass ratio, as shown in Fig. 5(b). These results
prove that the coupling degree of the coupled system depends on not only the closeness of uncoupled natural
frequencies but also the mass ratio. That is, it increases as the density of acoustic medium increases or mass of
structure system decreases. Figs. 5(c) and (d) display the natural frequencies, which change with the neck’s
position and cross-sectional area and show behavior similar to the results obtained in case study I-a. The non-
dimensional natural frequencies of the cavity-controlled modes decrease as the neck approaches the corner
from the center, and they increase with the cross-sectional area of the neck.

3.2.2. Case study II-b: double cavities blocked by the second oscillator at both ends ðOs ¼ Oa
1Þ

In Fig. 6, the effect of the four factors on Oc
i of the coupled system is shown for Os ¼ Oa

1. The first two
natural frequencies (Oc

1 and Oc
2) of the coupled system represent structural-controlled modes, but they have the

different relative motion of the oscillators. While two oscillators move in-phase at Oc
1, they move out-of-phase

at Oc
2. Figs. 6(a) and (b) show that the change in the stiffness ratio and the mass ratio strongly affects the
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Fig. 4. Influence of four factors on natural frequency Oc
i for O

s ¼ Oa
1 (Case study I-b): original stiffness ratio ðs1=sa

1Þ ¼ 21:10, original mass

ratio ðm1=ma
1Þ ¼ 6:45 and Oa

1 ¼ Os
b ¼ 0:58. (J) 1st natural frequency ðOc

1Þ, (&) 2nd natural frequency ðOc
2Þ, (X) 3rd natural frequency

ðOc
3Þ and (B) 4th natural frequency ðOc

4Þ. (a) Stiffness effect, (b) mass effect, (c) effect of the neck’s position and (d) effect of the neck’s

cross-sectional area.
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structural-controlled modes, but hardly the cavity-controlled modes. Also they represent the increase in the
difference of the two split natural frequencies with decrease in the mass ratio.

As the neck approaches the corner from the center, natural frequencies Oc
3, O

c
4 and Oc

5 of cavity-controlled
modes decrease and natural frequency Oc

1 of structural-controlled mode, which has two mechanical oscillators
moving in-phase at both ends at Oc

1, also decreases in Fig. 6(c). This response is due to increase of the effective
length of the neck with gn=h1. Fig. 6(d) shows that four natural frequencies (Oc

1, O
c
3, O

c
4 and Oc

5) except for the
2nd natural frequency increase with the cross-sectional area of the neck. However, the second non-
dimensional natural frequency Oc

2 does not change because two oscillators move out-of-phase at Oc
2.

In summary, the natural frequencies of the coupled system depend on the mass ratio and the stiffness ratio
between the structural system and the acoustic system, the neck’s position and cross-sectional area, and the
closeness of the natural frequencies of the uncoupled modes. The mass ratio and the stiffness ratio strongly
affect the structural-controlled mode rather than the cavity-controlled modes. On the contrary, the cavity-
controlled modes are affected strongly by the neck’s position and cross-sectional area rather than the mass
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Fig. 5. Influence of four factors on natural frequency Oc
i for OsoOa

1 (Case study II-a): stiffness ratio ¼ 2.77; mass ratio ¼ 6.45;

Os
b ¼ Os

0 ¼ 0:21; and Oa
1 ¼ 0:58. (J) 1st natural frequency ðOc

1Þ, (&) 2nd natural frequency ðOc
2Þ, (X) 3rd natural frequency ðOc

3Þ, (B) 4th

natural frequency ðOc
4Þ and (W) 5th natural frequency ðOc

5Þ. (a) Stiffness effect, (b) mass effect, (c) effect of the neck’s position and

(d) effect of the neck’s cross-sectional area.
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ratio and the stiffness ratio. And the degree of coupling is affected by the closeness of the natural frequencies
of uncoupled modes as well as the major four factors.

4. Discussions

Acoustic pressure distribution at each coupled mode and the relation between a new coupling parameter
and natural frequencies are discussed by the use of the results obtained in case study II-b. The discussion
centers on the effect of the neck’s position and cross-sectional area on the modal properties of the coupled
system. Also, the characteristics of the structure-controlled mode in our proposed theoretical model are briefly
mentioned in terms of existence and non-existence of a trunk lid and in terms of the coupling degree.

Fig. 7 shows the first five acoustic modes of the coupled system used in Case study II-b (Refer to [29]). In all
coupled modes, the acoustic pressure distribution around the neck is strongly affected by the evanescent wave,
but that of the point away from the neck is determined by the standing wave. Acoustic pressure near both ends
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Fig. 6. Influence of four factors on natural frequency Oc
i for Os ¼ Oa

1 (Case study II-b): original stiffness ratio ðs1=sa
1Þ ¼ 21:10, original

mass ratio ðm1=ma
1Þ ¼ 6:45, and Os

b ¼ Os
0 ¼ Oa

1 ¼ 0:58. (J) 1st natural frequency ðOc
1Þ, (&) 2nd natural frequency ðOc

2Þ, (X) 3rd natural

frequency ðOc
3Þ, (B) 4th natural frequency ðOc

4Þ and (W) 5th natural frequency ðOc
5Þ. (a) Stiffness effect, (b) mass effect, (c) effect of the

neck’s position and (d) effect of the neck’s cross-sectional area.
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depends on the interaction between the acoustic medium and the mechanical oscillator. The first two coupled
modes are structure-controlled modes, but the phases of the two oscillators at each mode are different from
each other. The first mode at Oc

1 has the same phase motion of the two oscillators at both ends, but two
oscillators in the second mode at Oc

2 have phase difference of 180 degree. Therefore, the first coupled mode has
acoustic pressure distribution similar to that of a rigid-wall acoustic mode, and change in the associated
natural frequency has the similar trend of the natural frequency of cavity-controlled mode changing with the
neck’s position and cross-sectional area. Acoustic pressure distribution in cavity-controlled modes is very
similar to that in uncoupled cavity modes.

The natural frequencies of our proposed theoretical model are inversely proportional to the new acoustic
parameter. Fig. 8 shows the effect of the neck’s position on the natural frequency of coupled modes. As gn=h1

increases, the associated natural frequency decreases and the value of the new coupling parameter L0n1=Sn1

increases. It is because rise in the number of cross-modes, which are generated due to existence of the neck,
increases added length as the neck approaches the edge from the center [29]. When the cross-sectional area
ratio is constant ðSn1 ¼ 0:1Þ, the increase in the effective length decreases the natural frequency of the
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Fig. 7. Natural modes of the coupled system for Os ¼ Oa
1 (Case study II-b). A1, A2, B are non-dimensional points (a1=l1, a2=l1, b=l1).

Absolute value of acoustic pressure: . (a) 1st coupled natural mode (Oc
1 ¼ 0:48), (b) 2nd coupled natural mode (Oc

2 ¼ 0:58),

(c) 3rd coupled natural mode (Oc
3 ¼ 0:69), (d) 4th coupled natural mode (Oc

4 ¼ 1:17) and (e) 5th coupled natural mode (Oc
5 ¼ 2:07).

J.W. Lee, J.M. Lee / Journal of Sound and Vibration 299 (2007) 900–917914
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Fig. 8. Relationship between the non-dimensional natural frequency and the new coupling parameter with the neck’s position for Os ¼ Oa
1

(Case study II-b): (J) natural frequency ðOc
i Þ and (B) a new coupling parameter ðL0n1=Sn1Þ. (a) 1st natural frequency, (b) 2nd natural

frequency, (c) 3rd natural frequency and (d) 4th natural frequency.
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associated coupled mode. Fig. 9 shows the effect of the neck’s cross-sectional area on the natural frequencies
of the coupled system in terms of the change in the new coupling parameter L0n1=Sn1. All natural frequencies
decrease with the increase in the value of the new coupling parameter. The decreasing rate of the structure-
controlled mode (the 1st mode) is much less than that of the cavity-controlled mode (the 3rd and 4th mode).
But, the decreasing rate of the structure-controlled mode is comparable to that of the cavity-controlled mode.

A theoretical model including a trunk lid may have another structural-controlled mode, but the existence of
a trunk lid does not strongly affect the degree of coupling. The closeness of uncoupled natural frequencies is
more important to the coupled system than the existence and non-existence of the trunk lid. Also, only
structural-controlled modes whose acoustic pressure distribution is similar to that of rigid-wall acoustic modes
or cavity-controlled modes are strongly affected by the change in a neck’s characteristics.

5. Conclusions

This paper suggested a new theoretical model to investigate interior noise in a passenger compartment with
a trunk compartment. The new model was a coupled structural–acoustic system composed of double cavities
connected by a neck and mechanical oscillators as shown in Fig. 1. In order to obtain the characteristic
equation, forced vibro-acoustical analysis was applied to the coupled system, and the plane wave theory was
used. Input acoustic impedance was written by the series summation of acoustic impedances calculated at the
surface of discontinuity in the cross-sectional area. Especially, evanescent waves as well as standing waves
were considered to investigate the effect of neck’s position and cross-sectional area on the natural frequencies
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Fig. 9. Relationship between the non-dimensional natural frequency and the new coupling parameter with a cross-sectional area of a neck

for Os ¼ Oa
1 (Case study II-b): (J) Natural frequency ðOc

i Þ and (B) a new coupling parameter ðL0n1=Sn1Þ. (a) 1st natural frequency, (b) 2nd

natural frequency, (c) 3rd natural frequency and (d) 4th natural frequency.
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of a coupled system. A new coupling parameter was derived to explain the dynamic behavior of a coupled
structural–acoustic system including double cavities connected by a neck.

Longitudinal mode, which is strongly related to the booming noise of an automobile with a trunk, was
examined in terms of mass ratio, stiffness ratio, a neck’s position and cross-sectional area. While the effect of
structural modification (change in mass ratio and stiffness ratio) is limited to structural-controlled modes, the
change in a neck’s characteristics, which are represented by a new parameter L0n1=Sn1 (non-dimensional
effective length of a neck divided by a cross-sectional area ratio), affects not only cavity-controlled modes but
also structural-controlled modes whose acoustic pressure distribution is similar to that of rigid-wall acoustic
modes or cavity-controlled modes. The natural frequencies are inversely proportional to the new coupling
parameter. They increase as a neck approaches the center from the corner and a neck’s cross-sectional area
increases.

In conclusions, the acoustic modal properties of a passenger compartment of an automobile with a trunk
can be modified by changing the position and cross-sectional area of the necks on the package tray, which
partitions the passenger compartment from the trunk. The effect of a neck’s cross-sectional area and position
will be qualitatively investigated in the experiments of the companion paper, Part 2.
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